Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Plants (Basel) ; 13(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38498568

RESUMEN

(1) Background: Within the framework of the European Interreg Italy-Switzerland B-ICE & Heritage project (2018-2022), this study originated from a three-year ethnobotanical survey in Valmalenco (Sondrio, Italy). Following a preliminary work published by our group, this research further explored the folk therapeutic use of Achillea erba-rotta subsp. moschata (Wulfen) I.Richardson (Asteraceae) for dyspepsia disorders, specifically its anti-inflammatory potential at a gastrointestinal level. (2) Methods: Semi-structured interviews were performed. The bitter taste was investigated through molecular docking software (PLANTS, GOLD), while the anti-inflammatory activity of the hydroethanolic extract, infusion, and decoction was evaluated based on the release of IL-8 and IL-6 after treatment with TNFα or Helicobacter pylori. The minimum inhibitory concentration and bacterial adhesion on the gastric epithelium were evaluated. (3) Results: In total, 401 respondents were interviewed. Molecular docking highlighted di-caffeoylquinic acids as the main compounds responsible for the interaction with bitter taste receptors. The moderate inhibition of IL-6 and IL-8 release was recorded, while, in the co-culture with H. pylori, stronger anti-inflammatory potential was expressed (29-45 µg/mL). The concentration-dependent inhibition of H. pylori growth was recorded (MIC = 100 µg/mL), with a significant anti-adhesive effect. (4) Conclusions: Confirming the folk tradition, the study emphasizes the species' potentiality for dyspepsia disorders. Future studies are needed to identify the components mostly responsible for the biological effects.

2.
Pharmaceutics ; 15(4)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37111776

RESUMEN

(1) Background: Filipendula ulmaria (L.) Maxim. (Rosaceae) (meadowsweet) is widely used in phytotherapy against inflammatory diseases. However, its active constituents are not exactly known. Moreover, it contains many constituents, such as flavonoid glycosides, which are not absorbed, but metabolized in the colon by gut microbiota, producing potentially active metabolites that can be absorbed. The aim of this study was to characterize the active constituents or metabolites. (2) Methods: A F. ulmaria extract was processed in an in vitro gastrointestinal biotransformation model, and the metabolites were characterized using UHPLC-ESI-QTOF-MS analysis. In vitro anti-inflammatory activity was evaluated by testing the inhibition of NF-κB activation, COX-1 and COX-2 enzyme inhibition. (3) Results: The simulation of gastrointestinal biotransformation showed a decrease in the relative abundance of glycosylated flavonoids such as rutin, spiraeoside and isoquercitrin in the colon compartment, and an increase in aglycons such as quercetin, apigenin, naringenin and kaempferol. The genuine as well as the metabolized extract showed a better inhibition of the COX-1 enzyme as compared to COX-2. A mix of aglycons present after biotransformation showed a significant inhibition of COX-1. (4) Conclusions: The anti-inflammatory activity of F. ulmaria may be explained by an additive or synergistic effect of genuine constituents and metabolites.

3.
Nutrients ; 15(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36986236

RESUMEN

Helicobacter pylori (H. pylori) is an etiologic factor of peptic ulcer disease and gastric cancer. Virulent strains of H. pylori are correlated with the severity of gastritis, due to NF-κB activation and IL-8 expression at the epithelial level. Ellagitannins have been documented for antibacterial and anti-inflammatory activities, thus suggesting their potential use in gastritis. Recently, several authors, including our group, demonstrated that tannin-rich extracts from chestnut byproducts, at present considered agricultural waste, display promising biological activities. In this work, we detected high levels of polyphenols in hydroalcoholic extracts from chestnut leaves (Castanea sativa L.). Among polyphenols, the ellagitannin isomers castalagin and vescalagin (about 1% w/w of dry extract) were identified as potential bioactive compounds. In GES-1 cells infected by H. pylori, leaf extract and pure ellagitannins inhibited IL-8 release (IC50 ≈ 28 µg/mL and 11 µM, respectively). Mechanistically, the anti-inflammatory activity was partly due to attenuation of NF-κB signaling. Moreover, the extract and pure ellagitannins reduced bacterial growth and cell adhesion. A simulation of the gastric digestion suggested that the bioactivity might be maintained after oral administration. At the transcriptional level, castalagin downregulated genes involved in inflammatory pathways (NF-κB and AP-1) and cell migration (Rho GTPase). To the best of our knowledge, this is the first investigation in which ellagitannins from plant extracts have demonstrated a potential role in the interaction among H. pylori and human gastric epithelium.


Asunto(s)
Gastritis , Infecciones por Helicobacter , Helicobacter pylori , Humanos , Taninos Hidrolizables/metabolismo , FN-kappa B/metabolismo , Interleucina-8/metabolismo , Mucosa Gástrica/metabolismo , Extractos Vegetales/uso terapéutico , Gastritis/microbiología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Células Epiteliales/metabolismo , Antiinflamatorios/uso terapéutico , Infecciones por Helicobacter/microbiología
4.
Molecules ; 27(21)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36364420

RESUMEN

Plants rich in hydrolyzable tannins were traditionally used all over the world for a variety of chronic inflammatory disorders, including arthritis, colitis, and dermatitis. However, the knowledge of their immunological targets is still limited though fundamental for their rational use in phytotherapy. The recent advances regarding the pathogenesis of inflammatory-based diseases represent an opportunity to elucidate the pharmacological mechanism of plant-derived metabolites with immunomodulatory activity. This review collects recent articles regarding the role of hydrolyzable tannins and their gut metabolites in Th1, Th2, and Th17 inflammatory responses. In line with the traditional use, rheumatoid arthritis (RA), inflammatory bowel diseases (IBDs), psoriasis, atopic dermatitis (AD), and asthma were the most investigated diseases. A substantial body of in vivo studies suggests that, beside innate response, hydrolyzable tannins may reduce the levels of Th-derived cytokines, including IFN-γ, IL-17, and IL-4, following oral administration. The mode of action is multitarget and may involve the impairment of inflammatory transcription factors (NF-κB, NFAT, STAT), enzymes (MAPKs, COX-2, iNOS), and ion channels. However, their potential impact on pathways with renewed interest for inflammation, such as JAK/STAT, or the modulation of the gut microbiota demands dedicate studies.


Asunto(s)
Artritis Reumatoide , Dermatitis Atópica , Humanos , Taninos Hidrolizables/farmacología , Células Th17 , Citocinas/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Dermatitis Atópica/metabolismo
5.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36012541

RESUMEN

Hamamelis virginiana L. bark extract is a traditional remedy for skin affections, including atopic dermatitis/eczema (AD). Hamamelis preparations contain tannins, including hamamelitannin (HT), although their pharmacological role in AD is still unknown. This study aimed to study the rational for its topical use by considering the impact of crucial biomarkers on AD pathogenesis. A standardized extract (HVE) (0.5−125 µg/mL) was compared to hamamelitannin (HT), its main compound (0.5−5 µg/mL), in a model of human keratinocytes (HaCaTs), challenged with an AD-like cytokine milieu (TNF-α, IFN-γ, and IL-4). HVE inhibited the release of mediators involved in skin autoimmunity (IL-6 and IL-17C) and allergy (TSLP, IL-6, CCL26, and MMP-9) with a concentration-dependent fashion (IC50s < 25 µg/mL). The biological mechanism was ascribed, at least in part, to the impairment of the NF-κB-driven transcription. Moreover, HVE counteracted the proliferative effects of IL-4 and recovered K10, a marker of skin differentiation. Notably, HT showed activity on well-known targets of IL-4 pathway (CCL26, K10, cell proliferation). To the best of our knowledge, this work represents the first demonstration of the potential role of Hamamelis virginiana in the control of AD symptoms, such as itch and skin barrier impairment, supporting the relevance of the whole phytocomplex.


Asunto(s)
Dermatitis Atópica , Hamamelis , Citocinas/farmacología , Dermatitis Atópica/tratamiento farmacológico , Humanos , Interleucina-4/farmacología , Interleucina-6/farmacología , Queratinocitos , Corteza de la Planta , Extractos Vegetales/farmacología , Piel
6.
Nutrients ; 14(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35565724

RESUMEN

Sumac (Rhus coriaria L.) is a spice and medicinal herb traditionally used in the Mediterranean region and the Middle East. Since we previously demonstrated Sumac biological activity in a model of tumor necrosis factor alpha (TNF-α)-induced skin inflammation, the present work is aimed at further demonstrating a potential role in inflammatory disorders, focusing on gastritis. For this purpose, different polar extracts (water-W, ethanol-water-EW, ethanol-E, ethanol macerated-Em, acetone-Ac, ethylacetate-EtA) were investigated in gastric epithelial cells (GES-1) challenged by TNF-α or H. pylori infection. The ethanolic extracts (E, EW, Em) showed the major phenolic contents, correlating with lower half maximal inhibitory concentrations (IC50s) on the release of interleukin-8 (IL-8, <15 µg/mL) and interleukin-6 (IL-6, <20 µg/mL) induced by TNF-α. Similarly, they inhibited IL-8 release (IC50s < 70 µg/mL) during Helicobacter pylori (H. pylori) infection and exhibited a direct antibacterial activity at comparable concentrations (minimum inhibitory concentration (MIC) = 100 µg/mL). The phenolic content and the bioactivity of EW were maintained after simulated gastric digestion and were associated with nuclear factor kappa B (NF-κB) impairment, considered the main putative anti-inflammatory mechanism. On the contrary, an anti-urease activity was excluded. To the best of our knowledge, this is the first demonstration of the potential role of Sumac as a nutraceutical useful in H. pylori-related gastritis.


Asunto(s)
Gastritis , Infecciones por Helicobacter , Helicobacter pylori , Rhus , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Suplementos Dietéticos , Células Epiteliales , Etanol , Mucosa Gástrica , Gastritis/tratamiento farmacológico , Gastritis/microbiología , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Interleucina-6 , Interleucina-8 , Fenoles/farmacología , Fenoles/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Factor de Necrosis Tumoral alfa , Agua
7.
ACS Omega ; 7(14): 11914-11928, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35449947

RESUMEN

Metabolic syndrome is a complex condition associated with a series of pathologies featuring glucose intolerance, diabetes, high blood pressure, dyslipidemia, microalbuminuria, overweight, and obesity. It is also related to nonalcoholic fatty liver disease (NAFLD), recognized as the most familiar cause of chronic liver disease worldwide. The overall prevalence of metabolic syndrome and, consequently, the one of NAFLD is constantly increasing worldwide. The initial management of these diseases involves lifestyle modifications, including changes in diet and physical exercise. In addition to conventional drugs like orlistat, botanicals are traditionally used to counteract these disorders, and some of them are currently under evaluation. The present work evaluated the in vivo beneficial effects of hydroalcoholic extracts of two Cameroonian spices, focusing on obesity-related hepatic lipid injury in high-fat-fed C57BL/6 mice. Hydroethanolic extracts were prepared and characterized by reverse phase-high-performance liquid chromatography (HPLC)-photodiode array detection and ultra performance liquid chromatography-triple time-of-flight electrospray ionization tandem mass spectroscopy (TOF-ESI-MS/MS) analysis. Plant extracts were orally administered for 30 days at different dose levels (100 and 200 mg kg-1 body weight (BW)) to obese C57BL/6 mice. Food intake (FI) and BW were recorded daily. Plasma biochemical parameters and lipid content were estimated at the beginning and at the end of the experiment. Liver tissues were subjected to histological examinations, lipid content, as well as oxidative stress markers, and FAME (fatty acid methyl esters) were estimated. Oral administration of extracts at 200 mg kg-1 BW significantly reduced FI and prevented BW gain. A decrease in the weight of the liver and a decrease in the hepatic and plasma lipid content were observed. Plasma enzyme (serum glutamic-oxaloacetic transaminase, SGOT; serum glutamic pyruvic transaminase, SGPT; alkaline phosphatase, ALP) activities were not indicative of any organ damage. Chemical analysis suggested that phenolic acids (4-caffeoylquinic acid, p-coumaric acid 4-O-glucoside, 5-caffeoylshikimic acid, caffeic acid hexose, and 4-O-methyl gallic acid) and flavonoids (morusin derivatives, naringenin-7-O-glucoside, and homoisoflavanone) identified in the extracts could potentially justify the biological properties observed. The main findings of this study showed that Xylopia parviflora (A. Rich.) Benth and Aframomum citratum (Pereira ex Oliv. et Hanb.) K. Shum decreased hepatic lipid accumulation in high-fat-diet (HFD)-induced obese C57BL/6 mice and confirmed, at least in part, our previous in vitro and ex vivo studies. The molecular mechanisms underlying these effects are still unclear and will be explored in the future.

8.
Cells Tissues Organs ; 211(5): 611-627, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34644704

RESUMEN

Human epidermis responds to ultraviolet (UV)B-induced damage by tolerating it, restoring it, or undergoing programmed cell death when the damage is massive. Recently, compounds rich in polyphenols, such as Vitis vinifera L. leaf extract (VVLe), have attracted a lot of interest for skin protection. We investigated the effect of VVLe pre-treatment (1 h) in a 2D model of HaCaT cells and in 3D organotypic cultures of normal human skin exposed to a single UVB dose to study the immediate specific events 1 h and the response orchestrated in the epidermal layer 24 h after irradiation, respectively. In both models, transmission electron microscopy analysis was carried out. The expression of the inducible keratin K17, the activation of both pSTAT3 and Nuclear Factor (NF)-κB signalling pathways, and the epidermal distribution of Toll-Like Receptor (TLR) 4 were assessed by immunofluorescence in the 2D and 3D model. In 3D organotypic cultures, thanks to the preservation of a multi-layered structure, the epidermal distribution of the differentiation biomarkers K10 and K14 as well as of K16 was analysed by immunofluorescence, while the release of interleukin (IL)-8 was evaluated by ELISA. In skin bioptic fragments, cytotoxicity and genotoxicity were investigated by LDH assay and Alkaline Comet assay, respectively, and then compared to cell proliferation. The epidermal distribution of the histone γ-H2AX, indicating the fragmented DNA, was analysed by immunofluorescence. In both experimental models, VVLe tuned UVB-induced K17 expression to a different extent in HaCaT cells and in the skin. In HaCaT cells, pSTAT3 activation was induced by UVB and reverted by VVLe pre-treatment. TLR4 expression was triggered by UVB in both models, but VVLe pre-treatment abolished this event only in HaCaT cells. NF-κB immunostaining increased both in the nucleus and in the cytoplasm only in HaCaT cells after UVB irradiation. In all irradiated skin samples, VVLe pre-treatment was not able to revert the inhibition of epidermal proliferation, K16 expression, and IL-8 secretion. The effectiveness of VVLe in contrasting the irradiation-induced genotoxicity still remains unclear. In conclusion, our study clearly shows that K17 is a robust marker induced in keratinocytes upon UVB stimulation and that this event can be reverted by a pre-treatment with VVLe. On the whole, these observations represent a novelty in the scenario of the complex relationships between the effects exerted by UVB rays on human skin and significantly improve the knowledge regarding the modulation of the early epidermal response induced by a single exposure to UVB in the presence of VVLe.


Asunto(s)
Receptor Toll-Like 4 , Vitis , Biomarcadores , Epidermis , Histonas , Humanos , Interleucina-8 , Queratina-17 , FN-kappa B , Extractos Vegetales/farmacología , Vitis/química
9.
Planta Med ; 88(7): 492-506, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33851375

RESUMEN

The use of Cannabis sativa is currently recognized to ease certain types of chronic pain, reduce chemotherapy-induced nausea, and improve anxiety. Nevertheless, few studies highlighted the therapeutic potential of C. sativa extracts and related phytocannabinoids for a variety of widespread skin disorders including acne, atopic dermatitis, psoriasis, pruritus, and pain. This review summarized the current evidence on the effects of phytocannabinoids at the cutaneous level through the collection of in vitro, in vivo, and clinical studies published on PubMed, Scopus, Embase, and Web of Science until October 2020. Phytocannabinoids have demonstrated potential anti-inflammatory, antioxidant, anti-aging, and anti-acne properties by various mechanisms involving either CB1/2-dependent and independent pathways. Not only classical immune cells, but also several skin-specific actors, such as keratinocytes, fibroblasts, melanocytes, and sebocytes, may represent a target for phytocannabinoids. Cannabidiol, the most investigated compound, revealed photoprotective, antioxidant, and anti-inflammatory mechanisms at the cutaneous level, while the possible impact on cell differentiation, especially in the case of psoriasis, would require further investigation. Animal models and pilot clinical studies supported the application of cannabidiol in inflammatory-based skin diseases. Also, one of the most promising applications of non-psychotropic phytocannabinoids is the treatment of seborrheic disorders, especially acne. In conclusion, the incomplete knowledge of the role of the endocannabinoid system in skin disorders emerged as an important limit for pharmacological investigations. Moreover, the limited studies conducted on C. sativa extracts suggested a higher potency than single phytocannabinoids, thus stimulating new research on phytocannabinoid interaction.


Asunto(s)
Acné Vulgar , Cannabidiol , Cannabinoides , Cannabis , Psoriasis , Acné Vulgar/tratamiento farmacológico , Animales , Antioxidantes/uso terapéutico , Cannabidiol/uso terapéutico , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Psoriasis/tratamiento farmacológico
10.
Nutrients ; 13(12)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34959824

RESUMEN

The molecular pathophysiology of cardiometabolic diseases is known to be influenced by dysfunctional ectopic adipose tissue. In addition to lifestyle improvements, these conditions may be managed by novel nutraceutical products. This study evaluatedthe effects of 11 Cameroonian medicinal spice extracts on triglyceride accumulation, glucose uptake, reactive oxygen species (ROS) production and interleukin secretion in SW 872 human adipocytes after differentiation with 100 µM oleic acid. Triglyceride content was significantly reduced by all spice extracts. Glucose uptake was significantly increased by Tetrapleura tetraptera, Aframomum melegueta and Zanthoxylum leprieurii. Moreover, Xylopia parviflora, Echinops giganteus and Dichrostachys glomerata significantly reduced the production of ROS. Concerning pro-inflammatory cytokine secretion, we observed that Tetrapleura tetraptera, Echinops giganteus, Dichrostachys glomerata and Aframomum melegueta reduced IL-6 secretion. In addition, Xylopia parviflora, Monodora myristica, Zanthoxylum leprieurii, and Xylopia aethiopica reduced IL-8 secretion, while Dichrostachys glomerata and Aframomum citratum increased it. These findings highlight some interesting properties of these Cameroonian spice extracts in the modulation of cellular parameters relevant to cardiometabolic diseases, which may be further exploited, aiming to develop novel treatment options for these conditions based on nutraceutical products.


Asunto(s)
Adipocitos/metabolismo , Suplementos Dietéticos , Síndrome Metabólico/terapia , Extractos Vegetales/farmacología , Especias/análisis , Línea Celular Tumoral , Glucosa/metabolismo , Humanos , Interleucinas/metabolismo , Liposarcoma , Especies Reactivas de Oxígeno/metabolismo , Triglicéridos/metabolismo
11.
Int J Nanomedicine ; 16: 6983-7022, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34703224

RESUMEN

Nowadays, medicinal herbs and their phytochemicals have emerged as a great therapeutic option for many disorders. However, poor bioavailability and selectivity might limit their clinical application. Therefore, bioavailability is considered a notable challenge to improve bio-efficacy in transporting dietary phytochemicals. Different methods have been proposed for generating effective carrier systems to enhance the bioavailability of phytochemicals. Among them, nano-vesicles have been introduced as promising candidates for the delivery of insoluble phytochemicals. Due to the easy preparation of the bilayer vesicles and their adaptability, they have been widely used and approved by the scientific literature. The first part of the review is focused on introducing phytosome technology as well as its applications, with emphasis on principles of formulations and characterization. The second part provides a wide overview of biological activities of commercial and non-commercial phytosomes, divided by systems and related pathologies. These results confirm the greater effectiveness of phytosomes, both in terms of biological activity or reduced dosage, highlighting curcumin and silymarin as the most formulated compounds. Finally, we describe the promising clinical and experimental findings regarding the applications of phytosomes. The conclusion of this study encourages the researchers to transfer their knowledge from laboratories to market, for a further development of these products.


Asunto(s)
Curcumina , Silimarina , Disponibilidad Biológica , Composición de Medicamentos , Fitoquímicos
12.
Molecules ; 26(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065200

RESUMEN

Ribes nigrum L. (blackcurrant) leaf extracts, due to high levels of flavonols and anthocyanins, have been shown to exhibit beneficial effects in inflammatory diseases. However, whereas their traditional use has been investigated and validated in several models of inflammation and oxidative stress, the possible impact on skin disorders is still largely unknown. The purpose of this work was to elucidate the effects of R. nigrum leaf extract (RNLE) on keratinocyte-derived inflammatory mediators, elicited by a Th1 or Th2 cytokine milieu. HaCaT cells were challenged with TNF-α, either alone or in combination with the costimulatory cytokines IFN-γ or IL-4, and the release of proinflammatory cytokines and mediators (IL-8, IL-6, s-ICAM-1, and TSLP) was evaluated. The results showed that RNLE preferentially interferes with IFN-γ signaling, demonstrating only negligible activity on TNF-α or IL-4. This effect was attributed to flavonols, which might also account for the ability of RNLE to impair TNF-α/IL-4-induced TSLP release in a cAMP-independent manner. These results suggest that RNLE could have an antiallergic effect mediated in keratinocytes via mechanisms beyond histamine involvement. In conclusion, the discovery of RNLE preferential activity against IFN-γ-mediated inflammation suggests potential selectivity against Th1 type response and the possible use in Th1 inflammatory diseases.


Asunto(s)
Inflamación/inducido químicamente , Interferón gamma/farmacología , Queratinocitos/efectos de los fármacos , Extractos Vegetales/farmacología , Hojas de la Planta/química , Ribes/química , Línea Celular , Citocinas/administración & dosificación , Citocinas/metabolismo , Humanos , Mediadores de Inflamación/administración & dosificación , Mediadores de Inflamación/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Quempferoles/farmacología , Queratinocitos/metabolismo , FN-kappa B/metabolismo , Quercetina/farmacología
13.
J Pharm Pharmacol ; 73(4): 553-559, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33793832

RESUMEN

OBJECTIVE: To investigate the main chemical components and the anti-inflammatory activity of extracts of Adelia ricinella L. aerial parts. METHODS: Three extracts obtained by soxhlet extraction and ethanol/water mixtures were evaluated in their chemical composition by UPLC-DAD-MS/MS. The in vitro anti-inflammatory activity of the prepared extracts was assessed through three different assays: COX-1 and COX-2 enzymatic inhibition, cell-based COX assays on RAW264.7 macrophages (ATCC) measuring the COX-2 protein expression by Western blot and the measurement of the PGE2 concentration in the supernatants of the culture medium. Also was determinate the effect of the three extracts on the RAW 264.7 cell viability. KEY FINDINGS: Few differences in the phytochemical profile were found between the three prepared extracts, identifying a blend of thirteen flavonoids derived from luteolin and apigenin, with orientin as main constituent. Plant extracts (alcoholic and aqueous) did not affect the macrophage cell viability (IC50 > 256 µg/ml) and significantly reduced COX-1 and COX-2 enzyme activities. Additionally, COX-2 expression and PGE2 release were suppressed after 24 h of LPS stimulation and treatment with plant extracts (8-64 µg/ml). CONCLUSIONS: A. ricinella extracts showed the ability to reduce the inflammatory effect exerted by LPS in murine macrophages. However, further studies should confirm their anti-inflammatory activity.


Asunto(s)
Apigenina , Ciclooxigenasa 1 , Ciclooxigenasa 2 , Euphorbiaceae/química , Flavonoides , Glucósidos , Luteolina , Animales , Antiinflamatorios/farmacología , Apigenina/aislamiento & purificación , Apigenina/farmacología , Supervivencia Celular/efectos de los fármacos , Ciclooxigenasa 1/análisis , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/análisis , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa/farmacología , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Glucósidos/aislamiento & purificación , Glucósidos/farmacología , Luteolina/aislamiento & purificación , Luteolina/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Componentes Aéreos de las Plantas , Extractos Vegetales/química , Extractos Vegetales/farmacología , Células RAW 264.7
14.
Molecules ; 26(4)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578815

RESUMEN

Coccoloba cowellii Britton (Polygonaceae) is an endemic and critically endangered plant that only grows in Camagüey, a province of Cuba. In this study, a total of 13 compounds were identified in a methanolic leaf extract, employing a dereplication of the UHPLC-HRMS data by means of feature-based molecular networking (FBMN) analysis in the Global Natural Products Social Molecular Network (GNPS), together with the interpretation of the MS/MS data and comparison with the literature. The major constituents were glucuronides and glycosides of myricetin and quercetin, as well as epichatechin-3-O-gallate, catechin, epicatechin and gallic acid, all of them being reported for the first time in C. cowellii leaves. The leaf extract was also tested against various microorganisms, and it showed a strong antifungal effect against Candida albicans ATCC B59630 (azole-resistant) (IC50 2.1 µg/mL) and Cryptococcus neoformans ATCC B66663 (IC50 4.1 µg/mL) with no cytotoxicity (CC50 > 64.0 µg/mL) on MRC-5 SV2 cells, determined by the resazurin assay. Additionally, the extract strongly inhibited COX-1 and COX-2 enzyme activity using a cell-free experiment in a dose-dependent manner, being significantly more active on COX-1 (IC50 4.9 µg/mL) than on COX-2 (IC50 10.4 µg/mL). The constituents identified as well as the pharmacological activities measured highlight the potential of C. cowellii leaves, increasing the interest in the implementation of conservation strategies for this species.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Inhibidores de la Ciclooxigenasa/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Polygonaceae/química , Tripanocidas/farmacología , Bacterias/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Hongos/efectos de los fármacos , Humanos , Pulmón/citología , Pulmón/efectos de los fármacos , Hojas de la Planta/química , Trypanosoma/efectos de los fármacos
16.
Nutrients ; 12(12)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33321889

RESUMEN

In Cameroon, local plants are traditionally used as remedies for a variety of ailments. In this regard, several papers report health benefits of Cameroonian spices, which include antioxidant and anti-microbial properties, whereas gastric anti-inflammatory activities have never been previously considered. The present study investigates the antioxidant and anti-inflammatory activities of hydro-alcoholic extracts of eleven Cameroonian spices in gastric epithelial cells (AGS and GES-1 cells). The extracts showed antioxidant properties in a cell-free system and reduced H2O2-induced ROS generation in gastric epithelial cells. After preliminary screening on TNFα-induced NF-κB driven transcription, six extracts from Xylopia parviflora, Xylopia aethiopica, Tetrapleura tetraptera, Dichrostachys glomerata, Aframomum melegueta, and Aframomum citratum were selected for further studies focusing on the anti-inflammatory activity. The extracts reduced the expression of some NF-κB-dependent pro-inflammatory mediators strictly involved in the gastric inflammatory process, such as IL-8, IL-6, and enzymes such as PTGS2 (COX-2), without affecting PTGS1 (COX-1). In conclusion, the selected extracts decreased pro-inflammatory markers by inhibiting the NF-κB signaling in gastric cells, justifying, in part, the traditional use of these spices. Other molecular mechanisms cannot be excluded, and further studies are needed to better clarify their biological activities at the gastric level.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Células Epiteliales/efectos de los fármacos , Extractos Vegetales/farmacología , Especias/análisis , Camerún , Mucosa Gástrica/citología , Humanos , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos
17.
Antioxidants (Basel) ; 9(4)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244567

RESUMEN

Rhus coriaria L. (sumac) is a small plant widely diffused in the Mediterranean region. Its fruit are often consumed as a spice but are also present in traditional medicine of several countries. Recently, interest in this plant has increased and many scientific works reported its beneficial effects including antioxidant and anti-inflammatory properties. Plant extracts can be successfully used against ultraviolet rays, which are able to reach and damage the human skin; however, sumac extracts were never applied to this usage. Thus, in this study, we used a macerated ethanol extract of Rhus coriaria L. dried fruit (mERC) to demonstrate its preventive role against the damage induced by ultraviolet-A rays (UV-A) on microvascular endothelial cells (HMEC-1). In vitro effects of the extract pre-treatment and UV-A exposure were evaluated in detail. The antioxidant capacity was assessed by reactive oxygen species (ROS) formation and cellular antioxidant activity measurement. Genoprotective effects of mERC were investigated as well. Our findings indicate that the extract acts as a cell cycle inhibitor or apoptosis inducer, according to the level of damage. The present work provides new insights into the usage of Rhus coriaria extracts against skin injuries.

18.
J Photochem Photobiol B ; 204: 111810, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32028189

RESUMEN

Vitis vinifera L. water extract from red grapevine leaves contains high levels of polyphenols in quantities similar to those found in red grape and grape seeds. Phenolic compounds are the largest group of natural antioxidants with also an anti-inflammatory activity, widely demonstrated both in vitro and in vivo. Interestingly, their antioxidant effect relies not only on the direct radical scavenging activity but also on their ability in modulating cellular signalling transduction pathways. UV radiation exerts multiple effects on skin cells inducing apoptosis, senescence and carcinogenesis. The aim of this study was to investigate the antioxidant and the DNA protective potentials of Vitis vinifera L. water extract against UV-A and UV-B radiation in HaCaT cells, a human keratinocytes cell line. Comet and É£H2AX assays were used to assess DNA damage in UV irradiated cells pre-treated or not with the extract (100 µg/mL). For UV-B, DNA damage resulted significantly increased at 40 mJ/cm2 dose determining cell cycle arrest and apoptosis. For UV-A, DNA damage was significant at 10 J/cm2 while cell cycle arrest and apoptosis were evident only at 25 J/cm2. The extract (1h of pre-treatment) highlights the antioxidant and scavenger activity on the UV-A, while the maintenance of the apoptosis with both UV-A and UV-B must be interpreted as an anti-mutagenic effect.


Asunto(s)
Apoptosis/efectos de los fármacos , Daño del ADN/efectos de la radiación , Extractos Vegetales/farmacología , Rayos Ultravioleta , Vitis/química , Antioxidantes/química , Antioxidantes/farmacología , Apoptosis/efectos de la radiación , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de la radiación , Línea Celular , Daño del ADN/efectos de los fármacos , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Extractos Vegetales/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Vitis/metabolismo
19.
Mediators Inflamm ; 2019: 6173893, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31341420

RESUMEN

Atherosclerosis is characterized by interaction between immune and vascular endothelial cells which is mediated by adhesion molecules occurring on the surface of the vascular endothelium leading to massive release of proinflammatory mediators. Ginkgo biloba L. (Ginkgoaceae) standardized extracts showing beneficial effects are commonly prepared by solvent extraction, and acetone is used according to the European Pharmacopoeia recommendations; the well-known Ginkgo biloba acetone extract EGb761® is the most clinically investigated. However, in some countries, the allowed amount of solvent is limited to ethanol, thus implying that the usage of a standardized Ginkgo biloba ethanol extract may be preferred in all those cases, such as for food supplements. The present paper investigates if ethanol and acetone extracts, with comparable standardization, may be considered comparable in terms of biological activity, focusing on the radical scavenging and anti-inflammatory activities. Both the extracts showed high inhibition of TNFα-induced VCAM-1 release (41.1-43.9 µg/mL), which was partly due to the NF-κB pathway impairment. Besides ROS decrease, cAMP increase following treatment with ginkgo extracts was addressed and proposed as further molecular mechanism responsible for the inhibition of endothelial E-selectin. No statistical difference was observed between the extracts. The present study demonstrates for the first time that ethanol and acetone extracts show comparable biological activities in human endothelial cell, thus providing new insights into the usage of ethanol extracts in those countries where restrictions in amount of acetone are present.


Asunto(s)
Endotelio Vascular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Acetona , Transporte Activo de Núcleo Celular , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Aterosclerosis/tratamiento farmacológico , AMP Cíclico/metabolismo , Selectina E/metabolismo , Etanol , Regulación de la Expresión Génica , Ginkgo biloba , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inflamación/tratamiento farmacológico , FN-kappa B/metabolismo , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
20.
Phytother Res ; 33(8): 2083-2093, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31250491

RESUMEN

Skin inflammatory diseases result from complex events that include dysregulation and abnormal expression of inflammatory mediators or their receptors in skin cells. The present study investigates the potential effect of a Cannabis sativa L. ethanolic extract standardized in cannabidiol as antiinflammatory agent in the skin, unraveling the molecular mechanisms in human keratinocytes and fibroblasts. The extract inhibited the release of mediators of inflammation involved in wound healing and inflammatory processes occurring in the skin. The mode of action involved the impairment of the nuclear factor-kappa B (NF-κB) pathway since the extract counteracted the tumor necrosis factor-alpha-induced NF-κB-driven transcription in both skin cell lines. Cannabis extract and cannabidiol showed different effects on the release of interleukin-8 and vascular endothelial growth factor, which are both mediators whose genes are dependent on NF-κB. The effect of cannabidiol on the NF-κB pathway and metalloproteinase-9 (MMP-9) release paralleled the effect of the extract thus making cannabidiol the major contributor to the effect observed. Down-regulation of genes involved in wound healing and skin inflammation was at least in part due to the presence of cannabidiol. Our findings provide new insights into the potential effect of Cannabis extracts against inflammation-based skin diseases.


Asunto(s)
Cannabidiol/química , Cannabis/química , Inflamación/tratamiento farmacológico , Extractos Vegetales/química , Piel/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Humanos , Piel/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA